Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(51): 61638-61652, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34908393

RESUMO

Injection of a hydrogel loaded with drugs with simultaneous anti-inflammatory and tissue regenerating properties can be an effective treatment for promoting periodontal regeneration in periodontitis. Nevertheless, the design and preparation of an injectable hydrogel with self-healing properties for tunable sustained drug release is still highly desired. In this work, polysaccharide-based hydrogels were formed by a dynamic cross-linked network of dynamic Schiff base bonds and dynamic coordination bonds. The hydrogels showed a quick gelation process, injectability, and excellent self-healing properties. In particular, the hydrogels formed by a double-dynamic network would undergo a gel-sol transition process without external stimuli. And the gel-sol transition time could be tuned by the double-dynamic network structure for in situ stimuli involving a change in its own molecular structure. Moreover, the drug delivery properties were also tunable owing to the gel-sol transition process. Sustained drug release characteristics, which were ascribed to a diffusion process, were observed during the first stage of drug release, and complete drug release owing to the gel-sol transition process was achieved. The sustained drug release time could be tuned according to the double-dynamic bonds in the hydrogel. The CCK-8 assay was used to evaluate the cytotoxicity, and the result showed no cytotoxicity, indicating that the injectable and self-healing hydrogels with double-dynamic bond tunable gel-sol transition could be safely used in controlled drug delivery for periodontal disease therapy. Finally, the promotion of periodontal regeneration in periodontitis in vivo was investigated using hydrogels loaded with ginsenoside Rg1 and amelogenin. Micro-CT and histological analyses indicated that the hydrogels were promising candidates for addressing the practical needs of a tunable drug delivery method for promoting periodontal regeneration in periodontitis.


Assuntos
Amelogenina/química , Materiais Biocompatíveis/química , Fármacos do Sistema Nervoso Central/farmacologia , Ginsenosídeos/farmacologia , Hidrogéis/química , Periodontite/tratamento farmacológico , Periodonto/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Fármacos do Sistema Nervoso Central/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ginsenosídeos/química , Hidrogéis/síntese química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...